Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(26): 5690-5704.e20, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38101407

RESUMO

The maturation of genomic surveillance in the past decade has enabled tracking of the emergence and spread of epidemics at an unprecedented level. During the COVID-19 pandemic, for example, genomic data revealed that local epidemics varied considerably in the frequency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage importation and persistence, likely due to a combination of COVID-19 restrictions and changing connectivity. Here, we show that local COVID-19 epidemics are driven by regional transmission, including across international boundaries, but can become increasingly connected to distant locations following the relaxation of public health interventions. By integrating genomic, mobility, and epidemiological data, we find abundant transmission occurring between both adjacent and distant locations, supported by dynamic mobility patterns. We find that changing connectivity significantly influences local COVID-19 incidence. Our findings demonstrate a complex meaning of "local" when investigating connected epidemics and emphasize the importance of collaborative interventions for pandemic prevention and mitigation.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Genômica , Pandemias/prevenção & controle , Saúde Pública , SARS-CoV-2/genética , Controle de Infecções , Geografia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37336825

RESUMO

Fatigue has been characterized as a post COVID-19 condition known to persist months after SARS-CoV-2 infection. COVID-19 has been reported to be associated with impaired cognitive function, including disorders in attention, memory, information processing, and executive functions. The objective of this study was to determine if post-COVID fatigue, manifested as tiredness while performing low-intensity physical activity, has a detrimental effect on neuropsychological performance, to achieve this, we randomly selected 20 participants with post-COVID fatigue and 20 SARS-CoV-2 negative age-matched controls from a database of 360 residents of Tijuana, Baja California in a cross-sectional study design. All 40 participants responded to a health survey, along with a neuropsychological assessment test via telephone call. Statistical analysis was performed using a multiple linear regression model including the following independent variables: study condition (post-COVID fatigue or negative control), sex, age, years of education, hypertension, asthma, administration of supplemental oxygen during COVID-19 recovery, and the hour at which the evaluation started. Significant regression analysis was obtained for all global parameters of the assessment, including BANFE-2 score (p = 0.021, R2 Adj. = 0.263), NEUROPSI score (p = 0.008, R2 Adj. = 0.319), and total errors (p = 0.021, R2 Adj. = 0.263), with significant regression coefficients for study condition on two global parameters, BANFE-2 score (p = 0.028, ß = - 0.371) and NEUROPSI score (p = 0.010, ß = -0.428). These findings suggest that the presence of post-COVID fatigue is a factor associated with a decrease in neuropsychological performance.

3.
Int J Hyperthermia ; 37(1): 1368-1382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33307890

RESUMO

Hyperthermia is a potentially lethal side-effect of Methamphetamine (Meth), a stimulant drug. Activation of non-shivering thermogenesis in brown adipose tissue (BAT) is partly responsible for Meth-induced rise in temperature, with contributing sympathetic neurotransmitters, such as norepinephrine (NE), and reactive oxygen species (ROS). However, the mechanisms controlling the development of a molecular thermogenic program in brown adipocytes (BA) following Meth are unknown. We hypothesize that Meth and NE affect BAT cells, BA and macrophages, to modify their physiology and interactions, with consequences to thermogenic genes. We also hypothesize that ROS play a critical role in signaling transcription of thermogenic genes and their regulatory components. Using primary BA and macrophage cultures, we measured Meth and NE interference with physiological and phenotypic measures that are relevant to thermogenesis in BAT. Meth caused both BA and macrophages to decrease mitochondrial maximal capacity and increase ROS. In BA, the thermogenic genes UCP1, PPARγ, PGC1α and GADD45γ were transcriptionally increased by Meth in a ROS-dependent manner. In macrophages, Meth increased oxidative stress response and caused a predominance of M2 subset markers. BA transcriptional changes in response to Meth and NE were significantly controlled by macrophages. The results suggest that BA and macrophages respond to Meth and NE, with effects on mitochondrial functions and transcription of genes involved in thermogenesis. ROS-dependent signals in BA and cellular interactions between BA and macrophages synergize to regulate the BAT environment and control critical pathways leading to Meth-hyperthermia.


Assuntos
Adipócitos Marrons , Metanfetamina , Tecido Adiposo Marrom , Macrófagos , Metanfetamina/efeitos adversos , Termogênese
4.
Psychopharmacology (Berl) ; 237(11): 3507, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33009630

RESUMO

The title of this article is "Effect of a dual orexin receptor antagonist (DORA-12) on sleep and event-related oscillations in rats exposed to ethanol vapor during adolescence".

5.
Sci Signal ; 13(648)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900879

RESUMO

Calorie restriction (CR) enhances health span (the length of time that an organism remains healthy) and increases longevity across species. In mice, these beneficial effects are partly mediated by the lowering of core body temperature that occurs during CR. Conversely, the favorable effects of CR on health span are mitigated by elevating ambient temperature to thermoneutrality (30°C), a condition in which hypothermia is blunted. In this study, we compared the global metabolic response to CR of mice housed at 22°C (the standard housing temperature) or at 30°C and found that thermoneutrality reverted 39 and 78% of total systemic or hypothalamic metabolic variations caused by CR, respectively. Systemic changes included pathways that control fuel use and energy expenditure during CR. Cognitive computing-assisted analysis of these metabolomics results helped to prioritize potential active metabolites that modulated the hypothermic response to CR. Last, we demonstrated with pharmacological approaches that nitric oxide (NO) produced through the citrulline-NO pathway promotes CR-triggered hypothermia and that leucine enkephalin directly controls core body temperature when exogenously injected into the hypothalamus. Because thermoneutrality counteracts CR-enhanced health span, the multiple metabolites and pathways altered by thermoneutrality may represent targets for mimicking CR-associated effects.


Assuntos
Adaptação Fisiológica/fisiologia , Restrição Calórica/métodos , Metabolismo Energético/fisiologia , Hipotálamo/fisiologia , Temperatura , Animais , Cromatografia Líquida/métodos , Citrulina/metabolismo , Análise por Conglomerados , Feminino , Hipotálamo/metabolismo , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/classificação , Metabolômica/métodos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
6.
Alcohol Clin Exp Res ; 44(7): 1378-1388, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424852

RESUMO

BACKGROUND: Alcohol use is on the rise among women in the United States which is especially concerning since women who drink have a higher risk of alcohol-related problems. Orexin (hypocretin) receptor antagonists may have some therapeutic value for alcohol-induced insomnia; however, the use of this class of drugs following female adolescent binge drinking is limited. The current study will address whether adolescent intermittent ethanol (AIE) in female rats can result in lasting changes in sleep pathology and whether orexin-targeted treatment can alleviate these deficits. METHODS: Following a 5-week AIE vapor model, young adult rats were evaluated on waking event-related oscillations (EROs) and EEG sleep. Subsequently, AIE rats were treated with orexin receptor 2 (OX2 R) antagonist (MK-1064; 10, 20mg/kg) to test for modifications in sleep pathology and waking ERO. RESULTS: Female AIE rats exhibited lasting changes in sleep compared to controls. This was demonstrated by increased fragmentation of slow wave sleep (SWS) and rapid eye movement sleep, as well as reductions in delta and theta power during SWS. There was no impact of AIE on waking EROs. Acute MK-1064 hastened SWS onset and increased the number of SWS episodes, without increasing sleep fragmentation in AIE and controls. While treatment with MK-1064 did not impact sleep EEG spectra, waking ERO energy was increased in delta, theta, and beta frequency bands. CONCLUSIONS: These results demonstrate that AIE can produce lasting changes in sleep in female rats, highly similar to what we previously found in males. Additionally, while the OX2 R antagonist promoted sleep in both alcohol-exposed and unexposed rats, it did not reverse most of the alcohol-induced disruptions in sleep. Thus, OX2 R antagonism may serve as a potential therapeutic strategy for the treatment of insomnia, but not the specific signs of alcohol-induced insomnia.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Ondas Encefálicas/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Distúrbios do Início e da Manutenção do Sono , Sono/efeitos dos fármacos , Animais , Ritmo Delta/efeitos dos fármacos , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Receptores de Orexina , Ratos , Privação do Sono , Sono REM/efeitos dos fármacos , Sono de Ondas Lentas/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos , Consumo de Álcool por Menores , Vigília/efeitos dos fármacos
7.
Brain Behav Immun ; 88: 920-924, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276028

RESUMO

The human genes for interleukin 13 (IL-13) and its receptor alpha 1 (IL-13Rα1) are in chromosomal regions associated with Parkinson's disease (PD). The interaction of IL-13 with its receptor increases the susceptibility of mouse dopaminergic neurons to oxidative stress. We identified two rare single SNPs in IL13 and IL13RA1 and measured their cytotoxic effects. rs148077750 is a missense leucine to proline substitution in IL13. It was found in individuals with early onset PD and no other known monogenic forms of the disease and is significantly linked with PD (Fisher's exact test: p-value = 0.01, odds ratio = 14.2). rs145868092 is a leucine to phenylalanine substitution in IL13RA1 affecting a residue critical for IL-13 binding. Both mutations increased the cytotoxic activity of IL-13 on human SH-SY5Y neurons exposed to sublethal doses of hydrogen peroxide, t-butyl hydroperoxide or RLS3, an inducer of ferroptosis. Our data show that both rs148077750 and rs145868092 conferred a gain-of-function that may increase the risk of developing PD.


Assuntos
Interleucina-13 , Doença de Parkinson , Animais , Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/genética , Camundongos , Estresse Oxidativo/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único
8.
Psychopharmacology (Berl) ; 237(10): 2917-2927, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31659377

RESUMO

RATIONALE: Sleep difficulties are one of the problems associated with adolescent binge drinking. However, the mechanisms underlying adolescent alcohol-associated sleep disturbances and potential targets for therapy remain under investigated. Orexin receptor antagonists may have therapeutic value in the treatment of insomnia, yet the use of this class of drugs in the treatment of sleep disturbances following adolescent alcohol exposure has not been studied. OBJECTIVES: This study employed a model whereby ethanol vapor exposure occurred for 5 weeks during adolescence (AIE), and waking event-related oscillations (EROs) and EEG sleep were subsequently evaluated in young adult rats. The ability of two doses (10, 30 mg/kg PO) of a dual orexin receptor antagonist (DORA-12) to modify sleep, EEG, and EROs was investigated in AIE rats and controls. RESULTS: Adolescent vapor exposure was found to produce a fragmentation of sleep, in young adults, that was partially ameliorated by DORA-12. DORA-12 also produced increases in delta and theta power in waking EROs recorded before sleep, and deeper sleep as indexed by increases in delta and theta power in the sleep EEG in both ethanol and control rats. Rats given DORA-12 also fell asleep faster than vehicle-treated rats as measured by a dose-dependent reduction in the latency to both the first slow wave and REM sleep episodes. CONCLUSIONS: This study showed that DORA-12 can affect the sleep disturbance that is associated with a history of adolescent ethanol exposure and also has several other sleep-promoting effects that are equivalent in both ethanol and control rats.


Assuntos
Azepinas/farmacologia , Benzimidazóis/farmacologia , Ondas Encefálicas/efeitos dos fármacos , Etanol/administração & dosagem , Antagonistas dos Receptores de Orexina/farmacologia , Sono/efeitos dos fármacos , Fatores Etários , Animais , Azepinas/uso terapêutico , Benzimidazóis/uso terapêutico , Ondas Encefálicas/fisiologia , Eletroencefalografia/efeitos dos fármacos , Etanol/toxicidade , Masculino , Antagonistas dos Receptores de Orexina/uso terapêutico , Ratos , Ratos Wistar , Sono/fisiologia , Transtornos do Sono-Vigília/induzido quimicamente , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/fisiopatologia , Volatilização
9.
Addict Biol ; 25(2): e12732, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30884076

RESUMO

Alcohol exposure typically begins in adolescence, and frequent binge drinking has been associated with health risk behaviors including alcohol use disorders (AUDs). Few studies have documented the effects of a history of adolescent binge drinking on neurophysiological consequences in young adulthood. Synchrony of phase (phase locking (PL)) of event-related oscillations (EROs) within and between different brain areas reflects communication exchange between neural networks and is a sensitive measure of adolescent development in both rats and humans, and thus may be a good translational measure of the potential harmful effects of alcohol exposure during adolescence. In this study, EROs were collected from 1041 young adults of Mexican American and American Indian ancestry (age 18-30 years) with and without a history of adolescent binge drinking (five drinks for boys and four for girls per occasion at least once per month) and in 74 young adult rats with and without a history of 5 weeks of adolescent alcohol vapor exposure. PL of theta and beta frequencies between frontal and parietal cortex were estimated using an auditory-oddball paradigm in the rats and a visual facial expression paradigm in the humans. Significantly lower PL between frontal and parietal cortices in the theta frequencies was seen in both the humans and the rats with a history of adolescent alcohol exposure as compared with their controls. These findings suggest that alcohol exposure during adolescence may result in decreases in synchrony between cortical neuronal networks, suggesting a developmental delay, in young adult humans and in rats.


Assuntos
Alcoolismo/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Eletroencefalografia/métodos , Etanol/farmacologia , Consumo de Álcool por Menores/estatística & dados numéricos , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Americanos Mexicanos , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Adulto Jovem , Indígena Americano ou Nativo do Alasca
10.
Curr Biol ; 29(24): 4291-4299.e4, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31786059

RESUMO

Mammals maintain a nearly constant core body temperature (Tb) by balancing heat production and heat dissipation. This comes at a high metabolic cost that is sustainable if adequate calorie intake is maintained. When nutrients are scarce or experimentally reduced such as during calorie restriction (CR), endotherms can reduce energy expenditure by lowering Tb [1-6]. This adaptive response conserves energy, limiting the loss of body weight due to low calorie intake [7-10]. Here we show that this response is regulated by the kappa opioid receptor (KOR). CR is associated with increased hypothalamic levels of the endogenous opioid Leu-enkephalin, which is derived from the KOR agonist precursor dynorphin [11]. Pharmacological inhibition of KOR, but not of the delta or the mu opioid receptor subtypes, fully blocked CR-induced hypothermia and increased weight loss during CR independent of calorie intake. Similar results were seen with DIO mice subjected to CR. In contrast, inhibiting KOR did not change Tb in animals fed ad libitum (AL). Chemogenetic inhibition of KOR neurons in the hypothalamic preoptic area reduced the CR-induced hypothermia, whereas chemogenetic activation of prodynorphin-expressing neurons in the arcuate or the parabrachial nucleus lowered Tb. These data indicate that KOR signaling is a pivotal regulator of energy homeostasis and can affect body weight during dieting by modulating Tb and energy expenditure.


Assuntos
Regulação da Temperatura Corporal/genética , Regulação da Temperatura Corporal/fisiologia , Receptores Opioides kappa/metabolismo , Analgésicos Opioides/metabolismo , Animais , Peso Corporal/fisiologia , Encéfalo/metabolismo , Restrição Calórica/métodos , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptores Opioides kappa/genética , Receptores Opioides mu/metabolismo , Receptores Opioides mu/fisiologia , Redução de Peso/fisiologia
11.
Alcohol Clin Exp Res ; 43(12): 2547-2558, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31589333

RESUMO

BACKGROUND: Adolescence is a critical period for neural development, and alcohol exposure during adolescence can lead to an elevated risk for health consequences as well as alcohol use disorders. Clinical and experimental data suggest that chronic alcohol exposure may produce immunomodulatory effects that can lead to the activation of pro-inflammatory cytokine pathways as well as microglial markers. The present study evaluated, in brain and blood, the effects of adolescent alcohol exposure and withdrawal on microglia and on the most representative pro- and anti-inflammatory cytokines and major chemokines that can contribute to the establishing of a neuroinflammatory environment. METHODS: Wistar rats (males, n = 96) were exposed to ethanol (EtOH) vapors, or air control, for 5 weeks over adolescence (PD22-PD58). Brains and blood samples were collected at 3 time points: (i) after 35 days of vapor/air exposure (PD58); (ii) after 1 day of withdrawal (PD59), and (iii) 28 days after withdrawal (PD86). The ionized calcium-binding adapter molecule 1 (Iba-1) was used to index microglial activation, and cytokine/chemokine responses were analyzed using magnetic bead panels. RESULTS: After 35 days of adolescent vapor exposure, a significant increase in Iba-1 immunoreactivity was seen in amygdala, frontal cortex, hippocampus, and substantia nigra. However, Iba-1 density returned to control levels at both 1 day and 28 days of withdrawal except in the hippocampus where Iba-1 density was significantly lower than controls. In serum, adolescent EtOH exposure induced a reduction in IL-13 and an increase in fractalkine at day 35. After 1 day of withdrawal, IL-18 was reduced, and IP-10 was elevated, whereas both IP-10 and IL-10 were elevated at 28 days following withdrawal. In the frontal cortex, adolescent EtOH exposure induced an increase in IL-1ß at day 35, and 28 days of withdrawal, and IL-10 was increased after 28 days of withdrawal. CONCLUSION: These data demonstrate that EtOH exposure during adolescence produces significant microglial activation; however, inflammatory markers seen in the blood appear to differ from those observed in the brain.


Assuntos
Encéfalo/metabolismo , Citocinas/metabolismo , Etanol/efeitos adversos , Síndrome de Abstinência a Substâncias/metabolismo , Fatores Etários , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/sangue , Masculino , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Ratos , Síndrome de Abstinência a Substâncias/sangue , Fatores de Tempo
12.
Temperature (Austin) ; 6(2): 158-168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31286026

RESUMO

During calorie restriction (CR), endotherms adjust several physiological processes including the decrease of core body temperature (Tb) and reduction of energy expenditure. We recently found that CR-induced hypothermia is regulated in a sex-dependent manner in mice with lowered central insulin-like growth factor receptor signaling. Here, we describe the contribution of sex hormones to CR-induced hypothermia in wild type C57BL6 mice by measuring Tb of female and male mice following bilateral gonadectomy and hormonal replacement. Specifically, we evaluated the effects of progesterone (P4), 17-ß estradiol (E2), a combination of both (P4 + E2) in females and of 5-α dihydrotestosterone (5-α DHT) in males. Gonadectomy resulted in an earlier and stronger CR-induced hypothermia in both sexes. These effects were fully antagonized in females by E2 replacement, but not by P4, which had only minor and partial effects when used alone and did not prevent the action of E2 during CR when both hormones were given in combination. 5-α-DHT had only minor and transient effects on preventing the reduction of Tb during CR on gonadectomized male mice. These findings indicate that gonadal hormones contribute to sex-specific regulation of Tb and energy expenditure when nutrient availability is scarce. Abbreviations: AL: ad libitum; ANOVA: analysis of variance; CR: calorie restriction; E2: 17-ß estradiol; GNX: gonadectomy or gonadectomized; IGF-1R: insulin-like growth factor 1 receptor; POA: preoptic area; P4: progesterone; RM: repeated measures; SD: standard deviation; SEM: standard error of mean; Tb: core body temperature; WT: wildtype; 5-α DHT: 5-α dihydrotestosterone.

13.
Sleep ; 42(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715515

RESUMO

STUDY OBJECTIVES: Insomnia is a prominent complaint in patients with alcohol use disorders (AUD). However, despite the importance of sleep in the maintenance of sobriety, treatment options for sleep disturbance associated with a history of AUD are currently limited. Recent clinical trials have demonstrated that suvorexant, a dual Hct/OX receptor antagonist, normalizes sleep in patients with primary insomnia; yet, its potential for the treatment of sleep pathology associated with AUD has not been investigated in either preclinical or clinical studies. METHODS: This study employed a model whereby ethanol vapor exposure or control conditions were administered for 8 weeks to adult rats. Waking event-related oscillations (EROs) and EEG sleep were evaluated at baseline before exposure and again following 24 hr of withdrawal from the exposure. Subsequently, the ability of vehicle (VEH) and two doses (10, 30 mg/kg IP) of suvorexant to modify EROs, sleep, and the sleep EEG was investigated. RESULTS: After 24 hr following EtOH withdrawal, the ethanol-treated group had increases in waking ERO θ and ß activity, more fragmented sleep (shorter duration and increased frequency of slow wave (SW) and rapid eye movement [REM] sleep episodes), and increased θ and ß power in REM and SW sleep. Suvorexant induced a dose-dependent decrease in the latency to REM and SW sleep onsets but also produced REM and SW sleep fragmentation and increased ß energy in waking EROs when compared with VEH. CONCLUSIONS: Taken together, these studies suggest that suvorexant has overall sleep-promoting effects, but it may exacerbate some aspects of sleep and EEG pathology.


Assuntos
Alcoolismo/fisiopatologia , Azepinas/farmacologia , Etanol/toxicidade , Medicamentos Indutores do Sono/farmacologia , Sono REM/efeitos dos fármacos , Sono de Ondas Lentas/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , Triazóis/farmacologia , Animais , Eletroencefalografia/efeitos dos fármacos , Humanos , Masculino , Antagonistas dos Receptores de Orexina/farmacologia , Ratos , Ratos Wistar , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Transtornos do Sono-Vigília/induzido quimicamente , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/fisiopatologia , Fatores de Tempo
14.
Alcohol ; 76: 37-45, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30554034

RESUMO

Alcohol produces complex effects on the immune system. Moderate alcohol use (1-2 drinks per day) has been shown to produce anti-inflammatory responses in human blood monocytes, whereas, the post mortem brains of severe alcoholics show increased immune gene expression and activated microglial markers. The present study was conducted to evaluate the time course of alcohol effects during exposure and after withdrawal, and to determine the relationship between microglial and cytokine responses in brain and blood. Forty-eight adult, male Wistar rats were exposed to chronic ethanol vapors, or air control, for 5 weeks. Following ethanol/air exposure blood and brains were collected at three time points: 1) while intoxicated, following 35 days of air/vapor exposure; 2) following 24 h of withdrawal from exposure, and 3) 28 days after withdrawal. One hemisphere of the brain was flash-frozen for cytokine analysis, and the other was fixed for immunohistochemical analysis. The ionized calcium-binding adapter molecule 1 (Iba-1) was used to evaluate microglia activation at the three time points, and rat cytokine/chemokine Magnetic Bead Panels (Millipore) were used to analyze frontal cortex tissue lysate and serum. Ethanol induced a significant increase in Iba-1 that peaked at day 35, remained significant after 1 day of withdrawal, and was elevated at day 28 in frontal cortex, amygdala, and substantia nigra. Ethanol exposure was associated with a transient reduction of the serum level of the major pro- and anti-inflammatory cytokines and chemokines and a transient increase of effectors of sterile inflammation. Little or no changes in these molecules were seen in the frontal cortex except for HMG1 and fractalkine that were reduced and elevated, respectively, at day 28 following withdrawal. These data show that ethanol exposure produces robust microglial activation; however, measures of inflammation in the blood differ from those in the brain over a protracted time course.


Assuntos
Citocinas/metabolismo , Etanol/farmacologia , Lobo Frontal/metabolismo , Microglia/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/sangue , Masculino , Proteínas dos Microfilamentos/metabolismo , Ratos , Síndrome de Abstinência a Substâncias/sangue , Fatores de Tempo
15.
Alcohol ; 73: 57-66, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30293056

RESUMO

Epidemiological studies suggest that binge drinking is prevalent among adolescents, and may result in neurobehavioral consequences. Animal models provide the experimental control to investigate the consequences of "binge" alcohol exposure during this neurodevelopmental epoch. The current study used an animal model that combined an intermittent pattern of alcohol vapor exposure with voluntary drinking of 20% unsweetened alcohol in adolescent male and female Wistar rats (postnatal day [PD] 22-62), in order to test for potential differences in behavioral changes, ethanol drinking, and hypocretin/orexin (Hcrt/OX) signaling associated with exposure status. Two weeks after discontinuation of the alcohol vapor exposure and drinking during adolescence, rats were tested in adulthood for anxiety-like behaviors using a modified open-field conflict task, pre-pulse facilitation of startle response, light/dark box, and marble burying test. Adolescent alcohol exposure led to overall decreased startle response and increased behavioral arousal in the light/dark chamber during adulthood. Additionally, male rats demonstrated more disinhibited behavior during the conflict task compared to females, and female rats exhibited more rearing behavior during the light/dark test. Rats were also given a 2-bottle choice test that resulted in adolescent alcohol-exposed rats drinking significantly more alcohol in adulthood. Further, female rats also consumed more alcohol in adulthood compared to males. Estrous cycle phase did not account for any of the sex differences observed in the behavioral measures. Histological results indicated that adolescent alcohol did not alter Hcrt/OX-1 or Hcrt/OX-2 receptor mRNA expression levels in adult rats compared to control adults. However, female rats expressed a higher level of Hcrt/OX-1 and Hcrt/OX-2 receptor mRNA in the frontal cortex compared to males. These data suggest that our current model of intermittent ethanol exposure in adolescence can modestly affect both behavior and future consumption of alcohol and that Hcrt/OX receptor signaling differs between males and females.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Administração por Inalação , Envelhecimento/psicologia , Animais , Ansiedade/psicologia , Depressores do Sistema Nervoso Central/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Comportamento de Escolha/efeitos dos fármacos , Ciclo Estral , Etanol/administração & dosagem , Feminino , Masculino , Orexinas , Ratos , Ratos Wistar , Reflexo de Sobressalto , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos
16.
iScience ; 2: 221-237, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29888756

RESUMO

Adrenergic stimulation of brown adipose tissue (BAT) induces acute and long-term responses. The acute adrenergic response activates thermogenesis by uncoupling oxidative phosphorylation and enabling increased substrate oxidation. Long-term, adrenergic signaling remodels BAT, inducing adaptive transcriptional changes that expand thermogenic capacity. Here, we show that the estrogen-related receptors alpha and gamma (ERRα, ERRγ) are collectively critical effectors of adrenergically stimulated transcriptional reprogramming of BAT. Mice lacking adipose ERRs (ERRαγAd-/-) have reduced oxidative and thermogenic capacity and rapidly become hypothermic when exposed to cold. ERRαγAd-/- mice treated long term with a ß3-adrenergic agonist fail to expand oxidative or thermogenic capacity and do not increase energy expenditure in response to norepinephrine (NE). Furthermore, ERRαγAd-/- mice fed a high-fat diet do not lose weight or show improved glucose tolerance when dosed with ß3-adrenergic agonists. The molecular basis of these defects is the finding that ERRs mediate the bulk of the transcriptional response to adrenergic stimulation.

17.
Psychopharmacology (Berl) ; 235(6): 1783-1791, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29589069

RESUMO

RATIONALE: Adolescents and young adults with alcohol problems may also have sleep difficulties. However, whether these sleep problems are a result of a history of drinking or arise due to other comorbid disorders is difficult to disentangle in human studies. Additionally, the mechanisms underlying adolescent alcohol-induced sleep disturbances and potential targets for therapy also remain under-investigated. Recent clinical trials have demonstrated that the anticonvulsant and analgesic drug gabapentin may have therapeutic value in normalizing sleep quality in adult recovering alcoholics, yet its potential for the treatment of adolescent sleep disturbances has not been investigated. OBJECTIVES: This study sought to evaluate the effects of a history of 5 weeks of chronic intermittent ethanol vapor exposure, administered during adolescence (AIE), on EEG sleep, in young adult rats (n = 29). The ability of two doses of gabapentin (30, 120 mg/kg) to modify sleep and slow wave activity were also investigated in these young adult rats exposed to alcohol vapor during adolescence. RESULTS: Adolescent vapor exposure in the rat was found to result in deficits in delta (1-4 Hz) and theta (4-8 Hz) power during slow wave sleep. Administration of gabapentin caused a "normalization" of the delta power deficits but did not affect theta power. CONCLUSIONS: This report suggests that the potential mechanisms and therapeutic targets for sleep disturbance associated with adolescent alcohol exposure can be studied in preclinical models and that gabapentin may show partial efficacy in ameliorating these sleep deficits.


Assuntos
Ritmo Delta/efeitos dos fármacos , Etanol/administração & dosagem , Gabapentina/uso terapêutico , Sono/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Ritmo Teta/efeitos dos fármacos , Administração por Inalação , Fatores Etários , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Ritmo Delta/fisiologia , Eletroencefalografia/efeitos dos fármacos , Etanol/efeitos adversos , Gabapentina/farmacologia , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Sono/fisiologia , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/fisiopatologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Ritmo Teta/fisiologia , Resultado do Tratamento , Volatilização
18.
Alcohol Clin Exp Res ; 42(3): 624-633, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29286538

RESUMO

BACKGROUND: Disturbances in sleep architecture, especially reductions in slow-wave sleep (SWS), are symptoms commonly observed in individuals with alcohol use disorders. Recent clinical trials have demonstrated that the anticonvulsant and analgesic drug gabapentin may have therapeutic value in normalizing sleep quality in recovering alcoholics. However, the brain mechanisms underlying this improvement in sleep following gabapentin treatment remain unknown. METHODS: In this study, adult Wistar rats were exposed to 8 weeks of chronic intermittent ethanol [EtOH] vapor (blood EtOH concentrations averaged 128.2 ± 17.4 mg/dl) or control conditions and then withdrawn. Sleep electroencephalograms [EEGs] and event-related oscillations (EROs) were evaluated at baseline prior to EtOH exposure and 24 hours following EtOH withdrawal. Four weeks following EtOH withdrawal the effects of saline and 2 doses of gabapentin (30, 120 mg/kg), on EROs and sleep EEGs, were evaluated. RESULTS: As compared to baseline, 24 hours following alcohol withdrawal SWS became fragmented as indexed by a significant increase in the number and a decrease in the duration of SWS episodes. Compared to controls, the EtOH-exposed group had more ERO energy in the beta frequency band in the parietal cortex. Gabapentin induced a dose-dependent decrease in the latency to the first SWS episode, and a reduction in sleep fragmentation. Gabapentin also produced a dose-dependent increase in ERO energy in the control group that was significantly attenuated in the EtOH-exposed group in the theta, and beta frequency bands. CONCLUSIONS: Taken together, these studies suggest that gabapentin can reverse some of the alcohol-induced sleep and EEG deficits but does not eliminate all of the enduring brain effects of EtOH exposure.


Assuntos
Ondas Encefálicas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Gabapentina/farmacologia , Sono/efeitos dos fármacos , Animais , Encéfalo/fisiopatologia , Ondas Encefálicas/fisiologia , Depressores do Sistema Nervoso Central/administração & dosagem , Eletroencefalografia , Etanol/administração & dosagem , Masculino , Ratos , Ratos Wistar , Sono/fisiologia , Sono de Ondas Lentas/efeitos dos fármacos , Sono de Ondas Lentas/fisiologia , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/fisiopatologia
19.
Proc Natl Acad Sci U S A ; 114(36): 9731-9736, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827363

RESUMO

When food resources are scarce, endothermic animals can lower core body temperature (Tb). This phenomenon is believed to be part of an adaptive mechanism that may have evolved to conserve energy until more food becomes available. Here, we found in the mouse that the insulin-like growth factor 1 receptor (IGF-1R) controls this response in the central nervous system. Pharmacological or genetic inhibition of IGF-1R enhanced the reduction of temperature and of energy expenditure during calorie restriction. Full blockade of IGF-1R affected female and male mice similarly. In contrast, genetic IGF-1R dosage was effective only in females, where it also induced transient and estrus-specific hypothermia in animals fed ad libitum. These effects were regulated in the brain, as only central, not peripheral, pharmacological activation of IGF-1R prevented hypothermia during calorie restriction. Targeted IGF-1R knockout selectively in forebrain neurons revealed that IGF signaling also modulates calorie restriction-dependent Tb regulation in regions rostral of the canonical hypothalamic nuclei involved in controlling body temperature. In aggregate, these data identify central IGF-1R as a mediator of the integration of nutrient and temperature homeostasis. They also show that calorie restriction, IGF-1R signaling, and body temperature, three of the main regulators of metabolism, aging, and longevity, are components of the same pathway.


Assuntos
Restrição Calórica/efeitos adversos , Hipotermia/fisiopatologia , Receptor IGF Tipo 1/fisiologia , Envelhecimento/fisiologia , Animais , Metabolismo Energético/fisiologia , Feminino , Dosagem de Genes , Homeostase/fisiologia , Hipotermia/etiologia , Hipotermia/prevenção & controle , Longevidade/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Caracteres Sexuais , Transdução de Sinais/fisiologia
20.
J Neuroinflammation ; 14(1): 88, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28427412

RESUMO

BACKGROUND: The majority of Parkinson's disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD. Experiments in rodents showed that severe chronic stress can reduce the number of dopaminergic neurons in the substantia nigra pars compacta (SNc); the same cells that are lost in PD. These actions are at least in part mediated by increased oxidative stress. Here, we tested the hypothesis that the interleukin-13 receptor alpha 1 (IL-13Rα1), a cytokine receptor whose activation increases the vulnerability of dopaminergic neurons to oxidative damage, participates in the stress-dependent damage of these neurons. METHODS: Mice were subject to daily sessions of 8 h (acute) stress for 16 weeks (5 days a week), a procedure previously showed to induce loss of dopaminergic neurons in the SNc. The source and the kinetics of interleukin-13 (IL-13), the endogenous ligand of IL-13Rα1, were evaluated 0, 1, 3, 6, and 8 h and at 16 weeks of stress. Identification of IL-13 producing cell-type was performed by immunofluorescent and by in situ hybridization experiments. Markers of oxidative stress, microglia activation, and the number of dopaminergic neurons in IL-13Rα1 knock-out animals (Il13ra1 Y/ - ) and their wild-type littermates (Il13ra1 Y/+ ) were evaluated at 16 weeks of stress and at 20 weeks, following a 4 week non-stressed period and compared to non-stressed mice. RESULTS: IL-13 was expressed in microglial cells within the SN and in a fraction of the tyrosine hydroxylase-positive neurons in the SNc. IL-13 levels were elevated during daily stress and peaked at 6 h. 16 weeks of chronic restraint stress significantly reduced the number of SNc dopaminergic neurons in Il13ra1 Y/+ mice. Neuronal loss at 16 weeks was significantly lower in Il13ra1 Y/- mice. However, the loss of dopaminergic neurons measured at 20 weeks, after 4 weeks of non-stress following the 16 weeks of stress, was similar in Il13ra1 Y/+ and Il13ra1 Y/- mice. CONCLUSIONS: IL-13, a cytokine previously demonstrated to increase the susceptibility of SNc dopaminergic neurons to oxidative stress, is elevated in the SN by restraint stress. Lack of IL-13Rα1 did not prevent nor halted but delayed neuronal loss in the mouse model of chronic restraint stress. IL-13/IL-13Rα1 may represent a target to reduce the rate of DA neuronal loss that can occur during severe chronic restraint stress.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Subunidade alfa1 de Receptor de Interleucina-13/deficiência , Estresse Oxidativo/fisiologia , Estresse Psicológico/metabolismo , Animais , Contagem de Células/métodos , Neurônios Dopaminérgicos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Psicológico/patologia , Substância Negra/metabolismo , Substância Negra/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...